Google Excellent Papers for 2011

  Google 在官方博客发布了其在2011年发表的一些精彩的文章介绍,原文地址http://goo.gl/UbRKp,我从中摘录了一些比较感兴趣领域的内容,Google在自然语言处理,信息检索,机器翻译等领域确实拥有强大的研发能力,这不仅体现在工程上,产品上,也体现在各种研究方向的主流会议期刊上发表文章,这是一个强大公司的标志。

Information Retrieval

Reputation Systems for Open Collaboration”, B.T. Adler, L. de Alfaro, A. Kulshrestra, I. Pye, Communications of the ACM, vol. 54 No. 8 (2011), pp. 81-87.

This paper describes content based reputation algorithms, that rely on automated content analysis to derive user and content reputation, and their applications for Wikipedia and google Maps. The Wikipedia reputation system WikiTrust relies on a chronological analysis of user contributions to articles, metering positive or negative increments of reputation whenever new contributions are made. The Google Maps system Crowdsensus compares the information provided by users on map business listings and computes both a likely reconstruction of the correct listing and a reputation value for each user. Algorithmic-based user incentives ensure the trustworthiness of evaluations of Wikipedia entries and Google Maps business information.

Machine Learning and Data Mining

Domain adaptation in regression”, Corinna Cortes, Mehryar Mohri, Proceedings of The 22nd International Conference on Algorithmic Learning Theory, ALT 2011.

Domain adaptation is one of the most important and challenging problems in machine learning.  This paper presents a series of theoretical guarantees for domain adaptation in regression, gives an adaptation algorithm based on that theory that can be cast as a semi-definite programming problem, derives an efficient solution for that problem by using results from smooth optimization, shows that the solution can scale to relatively large data sets, and reports extensive empirical results demonstrating the benefits of this new adaptation algorithm.

On the necessity of irrelevant variables”, David P. Helmbold, Philip M. Long, ICML, 2011

Relevant variables sometimes do much more good than irrelevant variables do harm, so that it is possible to learn a very accurate classifier using predominantly irrelevant variables.  We show that this holds given an assumption that formalizes the intuitive idea that the variables are non-redundant.  For problems like this it can be advantageous to add many additional variables, even if only a small fraction of them are relevant.

Online Learning in the Manifold of Low-Rank Matrices”, Gal Chechik, Daphna Weinshall, Uri Shalit, Neural Information Processing Systems (NIPS 23), 2011, pp. 2128-2136.

Learning measures of similarity from examples of similar and dissimilar pairs is a problem that is hard to scale. LORETA uses retractions, an operator from matrix optimization, to learn low-rank similarity matrices efficiently. This allows to learn similarities between objects like images or texts when represented using many more features than possible before.

Machine Translation

Training a Parser for Machine Translation Reordering”, Jason Katz-Brown, Slav Petrov, Ryan McDonald,Franz Och, David Talbot, Hiroshi Ichikawa, Masakazu Seno, Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP ’11).

Machine translation systems often need to understand the syntactic structure of a sentence to translate it correctly. Traditionally, syntactic parsers are evaluated as standalone systems against reference data created by linguists. Instead, we show how to train a parser to optimize reordering accuracy in a machine translation system, resulting in measurable improvements in translation quality over a more traditionally trained parser.

Watermarking the Outputs of Structured Prediction with an application in Statistical Machine Translation”, Ashish Venugopal, Jakob Uszkoreit, David Talbot, Franz Och, Juri Ganitkevitch, Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP).

We propose a general method to watermark and probabilistically identify the structured results of machine learning algorithms with an application in statistical machine translation. Our approach does not rely on controlling or even knowing the inputs to the algorithm and provides probabilistic guarantees on the ability to identify collections of results from one’s own algorithm, while being robust to limited editing operations.

Inducing Sentence Structure from Parallel Corpora for Reordering”, John DeNero, Jakob Uszkoreit, Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Automatically discovering the full range of linguistic rules that govern the correct use of language is an appealing goal, but extremely challenging.  Our paper describes a targeted method for discovering only those aspects of linguistic syntax necessary to explain how two different languages differ in their word ordering.  By focusing on word order, we demonstrate an effective and practical application of unsupervised grammar induction that improves a Japanese to English machine translation system.

NLP

Unsupervised Part-of-Speech Tagging with Bilingual Graph-Based Projections”, Dipanjan Das, Slav Petrov,Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL ’11), 2011,Best Paper Award.

We would like to have natural language processing systems for all languages, but obtaining labeled data for all languages and tasks is unrealistic and expensive. We present an approach which leverages existing resources in one language (for example English) to induce part-of-speech taggers for languages without any labeled training data. We use graph-based label propagation for cross-lingual knowledge transfer and use the projected labels as features in a hidden Markov model trained with the Expectation Maximization algorithm.

Speech

Improving the speed of neural networks on CPUs”, Vincent Vanhoucke, Andrew Senior, Mark Z. Mao, Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011.

As deep neural networks become state-of-the-art in real-time machine learning applications such as speech recognition, computational complexity is fast becoming a limiting factor in their adoption. We show how to best leverage modern CPU architectures to significantly speed-up their inference.

Bayesian Language Model Interpolation for Mobile Speech Input”, Cyril Allauzen, Michael Riley,Interspeech 2011.

Voice recognition on the Android platform must contend with many possible target domains – e.g. search, maps, SMS. For each of these, a domain-specific language model was built by linearly interpolating several n-gram LMs from a common set of Google corpora. The current work has found a way to efficiently compute a single n-gram language model with accuracy very close to the domain-specific LMs but with considerably less complexity at recognition time.

Statistics

Large-Scale Parallel Statistical Forecasting Computations in R”, Murray Stokely, Farzan Rohani, Eric Tassone, JSM Proceedings, Section on Physical and Engineering Sciences, 2011.

This paper describes the implementation of a framework for utilizing distributed computational infrastructure from within the R interactive statistical computing environment, with applications to timeseries forecasting. This system is widely used by the statistical analyst community at Google for data analysis on very large data sets.

the likelihood with which a user is interested in a tuple, as well as (b) how one negotiates the lack of knowledge of an explicit set of users. This work presents theoretical and experimental results showing that the suggested algorithm significantly outperforms previously suggested approaches.

Hyper-local, directions-based ranking of places”, Petros Venetis, Hector Gonzalez, Alon Y. Halevy, Christian S. Jensen, PVLDB, vol. 4(5) (2011), pp. 290-30.

Click through information is one of the strongest signals we have for ranking web pages. We propose an equivalent signal for raking real world places: The number of times that people ask for precise directions to the address of the place. We show that this signal is competitive in quality with human reviews while being much cheaper to collect, we also show that the signal can be incorporated efficiently into a location search system.

发表评论

电子邮件地址不会被公开。 必填项已用*标注